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Abstract. A common observation from an atomistic to continuum
coupling method is that the error is often generated and concentrated
near the interface, where the two models are combined. In this paper,
a new method is proposed to suppress the error at the interface, and
as a consequence, the overall accuracy is improved. The method is mo-
tivated by formulating the molecular mechanics model as a two-stage
minimization problem. In particular, it is demonstrated that the error
at the interface can be considerably reduced when new basis functions
are introduced in a Galerkin projection formalism. The improvement of
the accuracy is illustrated by two examples. Further, comparison with
some quasicontinuum-type methods is provided.

1. Introduction

Multiscale modeling has been becoming an extremely important tool in
many areas of applied sciences [10]. By combining models from different
spatial and temporal scales, one can describe and simulate complex physical
processes with balanced accuracy and efficiency.

For the modeling of mechanical properties of crystalline materials, one
notable success is the quasicontinuum (QC) method [53]. In addition to its
applications to numerous nano-mechanical systems, it also serves as a great
example, where a conventional continuum (elasticity) model can be supple-
mented with an atomic-level description to appropriately incorporate the
needed microscopic structures. Since the first emergence of the QC method,
there have been a lot of recent developments aimed at understanding and
improving its modeling accuracy [36, 33]. In particular, the Cauchy-Born
approximation [4, 16] in the QC method, which evaluates the elastic energy
or the strain-stress relation based on the underlying lattice structures and
atomic interactions, has been analyzed in [3, 14].

Another important issue in such multiscale methods is the consistency
of the specific strategy for combining the two models. This is challenging,
especially because the two models are of different nature: The elasticity
model is continuous, and is posed in terms of strain and stress (or energy),
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while the atomistic model is expressed using displacements and interatomic
forces. The inconsistency is manifested, for instance, by the appearance
of ghost forces [51]. Explicit error estimates for the influence of the ghost
forces can be found in [38, 6, 7] for models in one, two, and three dimen-
sions. Meanwhile, a number of methods have been proposed to remove
ghost forces. These include the force correction by “deadload” [51], the
quasi-nonlocal QC method [52], and the geometrically consistent scheme
[12]. More recent efforts include the energy-based atomistic-to-continuum
coupling methods [49, 50, 41, 42], and the energy-based blended QC method
[55], etc. Nevertheless, in high dimensions when the interface is of general
geometry, removing ghost forces in an energy-based method remains an open
challenge. Another approach is to couple the two models based on forces,
e.g., [51, 35, 36, 27, 22, 43].

From the perspective of numerical analysis, how the aforementioned meth-
ods approximate a solution of the atomistic model has been of great interest
over a decade; see [33] for a review and references therein. To address the
issue of convergence, one needs to prove consistency (free of ghost forces)
and some stability conditions. Thorough studies have been conducted in the
one-dimensional case. Under some technical conditions, it has been proven
that the quasi-nonlocal QC method converges linearly in W 1,∞ norm [38].

Its convergence rate is ε1+1/p if the W 1,p norm is used with 1 ≤ p ≤ ∞ [8]. It
has also been proven that the geometrically consistent QC method converges
linearly in W 1,∞ norm [38]. Convergence of the force-based QC method can
be found in [37, 9] with a second-order accuracy [9]. There are results in
high dimensions as well, e.g., [30, 31] for a force-based method, and [40] for
an energy-based atomistic/continuum method. Also of practical importance
is the adaptive approach based on a systematic error control [39, 44, 45]. In
addition, convergence of the QC method has also been investigated using
the notion of Γ−convergence [48].

Numerous numerical results indicate that the error, especially the defor-
mation gradient, exhibits peaks around the interface between the atomistic
and continuum regions, regardless of whether ghost forces exist in a cou-
pling method. In the presence of ghost forces, the width of the peak can
be estimated [38, 6, 7]. For example, in one space dimension, it is of the

order ε| ln ε|. The width for a two-dimensional model is O(ε
1
2 ). Motivated

by these observations, the current work aims to improve the accuracy at
the interface. Similarly to the rep-atoms in the original QC framework, we
select a number of coarse-grained (CG) variables to begin with. To motivate
the method, we formulate the atomistic model as a two-stage minimization
problem, from which we derive an effective model at the coarse scale. We
further draw the connection to the standard Galerkin projection. A simple
calculation shows that in principle the exact effective model for a given set
of CG variables can be derived; but compared to the Galerkin method, it
contains an additional term in the stiffness matrix. The large error near the



AN ATOMISTIC/CONTINUUM COUPLING METHOD USING ENRICHED BASES 3

interface can thus be attributed to having neglected this term. In light of
the serious issues with ghost forces, we finally formulate the method as a
force-based method, in which the ghost forces do not appear.

The purpose of this paper is to introduce proper approximations of the
aforementioned missing term and demonstrate how the approximation re-
duces the error near the interface. In particular, we propose to use the
Krylov subspace approximation and the Lanczos algorithm. With the con-
nection to the Galerkin method, this can be implemented by projecting the
atomistic model to an extended subspace. The additional bases, referred to
as enriched bases, are defined and supported near the interface, which do
not require much extra computational cost. More importantly, unlike the
basis functions in the standard Galerkin method, they take into account the
atomic interactions and improve the modeling accuracy.

Currently there is no analytical result that quantifies the numerical error
in this approach. The current method does not show resemblance to any
existing approach, and the analysis of the accuracy is still open. But we
have done extensive numerical experiments to show how the enriched bases
affect the accuracy. More specifically, we start with a one-dimensional chain
model, a test problem considered in many other works, and conduct exten-
sive numerical tests, including tests on the rate of convergence. In addition,
we consider a one-dimensional model of fracture, which in spite of its sim-
plicity, captures some essential aspects of crack propagation. Throughout
the numerical study, our emphasis is focused on the error measured in vari-
ous norms, some of which have not been considered in previous theoretical
analysis. Issues on how to apply the current approach to two- or three-
dimensional problems will be discussed in Section 2.4 and applications to
more important micro-mechanical systems will be considered in subsequent
works.

The remaining part of the paper is organized as follows. In Section 2,
we derive an effective coarse-grained model for molecular mechanics, and
introduce Galerkin methods with connection to the QC method. Many
numerical studies of Galerkin methods and other multiscale methods are
presented in Section 3. Conclusions are drawn in Section 4.

2. Methodology

Consider a system with N atoms interacting through the potential func-
tion U , and let f ex

i be the external force on the i-th atom. At zero temper-
ature, the total energy of the system can be written as

(1) V (y) = U(y1, . . . ,yN )−
N∑
i=1

f ex
i · yi,

where yi is the position of the i-th atom in the deformed state. An equi-
librium atomic configuration is determined from the following minimization
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problem:
{y1, . . . ,yN} = argmin V (y)

with y subject to certain boundary condition. This is known as the molec-
ular mechanics model.

Meanwhile, the displacement of the i-th atom is defined as

ui = yi − xi,

where xi is the reference position of the i-th atom, typically defined in an
undeformed configuration. We rewrite the minimization problem in terms
of the displacement as follows

(2) u = argmin V (u),

where u = {u1, . . . ,uN} and V (u) = U(u1, . . . ,uN )−u · f ex. We drop the
−x · f ex term which will not affect the solution of (2). In what follows, a
solution of (2) will be considered as the exact solution for comparison.

2.1. The motivation for the coarse-grained model. Although N is
very large in real applications, only a small number of degrees of freedom
is required to adequately describe the displacement field for systems with
localized defects, such as point defects, dislocations, and cracks. This has
been the primary motivation for all the existing atomistic to continuum
coupling methods. Conceptually, there are two distinct regions, one of which
contains local defects, where all the atoms are retained. The other is the
surrounding bulk where the displacement is smooth. The first region will be
referred to as atomistic region, and the latter will be called the continuum
region, where a reduction of the model is possible. For this purpose, let
us first introduce general CG variables, denoted by q, without having to
explicitly specify how the domains are divided. Furthermore, let the number
of CG variables be n with n � N . In practice, all the atoms near local
defects are chosen, and much fewer atoms are needed in the surrounding
region where the displacement is smooth. Here, we define the CG variables
via a linear operator Φ ∈ Rn×N which connects the fine scale variables u to
the coarse variables q according to the equation

(3) q = Φu.

This is similar to the restriction operator in multigrid methods [5, 34]. We
assume that Φ has full rank so that the CG variables are independently
defined. Meanwhile, ΦT may be regarded as an interpolation operator such
that u ≈ ΦTq. This suggests that one can choose standard finite element
basis functions to construct Φ. More details will be given later.

Problem (2) can be formulated into two successive minimization problems
[11]. To explain this, we first fix the CG variables q, and solve

(4) min
u:Φu=q

V (u)

using (3) as constraints. Conceptually, to remove the constraints, we may
let X0 = Range(ΦT ), and write u = ΦT (ΦΦT )−1q+ξ, with the free variable
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ξ ∈ X⊥0 . Let the resulting minimal energy be Weff(q). In the second problem,
we solve

(5) min
q
Weff(q).

Obtaining a suitable approximation of the effective energy Weff(q) is a gen-
eral and fundamental problem in molecular modeling [20]. The common goal
is to derive an effective problem for q, from which efficient methods can be
used to determine the CG variables. To motivate the proposed procedure,
we first consider a quadratic potential

(6) V (u) =
1

2
uTAu− uTf ex.

Under this approximation, the exact solution to (4) reads as

(7) u = Rq +QuA
−1f ex

with

R = A−1ΦT (ΦA−1ΦT )−1,

Pu = RΦ,

Qu = I − Pu.

As a consequence, the effective model for q is given by

Weff(q) =
1

2
qTRTARq − qTRTf ex.

If the force field is “smooth” in the sense that it can be approximated by
f ex = ΦTg for some g ∈ Rn, then the Euler-Lagrange equation of (5) is
given by

(8) (ΦA−1ΦT )−1q = g.

We remark that the reconstruction condition f ex = ΦTg can be satisfied if
a problem has localized defects and the CG variables are chosen properly.

The above formulation can be further simplified by introducing Ψ ∈
R(N−n)×N , which maps the atomic information to the remaining degrees of
freedom after coarse-graining. Ψ is chosen as an orthogonal matrix. Namely,

(9) ΨΨT = IN−n, ΨΦT = 0.

Next we let P = ΦTM−1Φ be the orthogonal projection to Y := Range(ΦT )
with M = ΦΦT ∈ Rn×n. Its complementary projection is Q = ΨTΨ. Using
blockwise matrix inversion formulas, we can rewrite the matrix in (8) as
follows

(ΦA−1ΦT )−1 = M−1ΦAΦTM−1 −M−1ΦAΨT (ΨAΨT )−1ΨAΦTM−1.

It is now clear that the exact effective equation can be rewritten as

(10) (A0 −A1)p = Φf ex,
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where

A0 = ΦAΦT ,(11)

A1 = ΦAΨT (ΨAΨT )−1ΨAΦT ,(12)

p = M−1q.(13)

These calculations, although quite simple, suggest an important approach
to derive accurate coupling methods. We further comment that

(1) The formulas above are exact for linearized models. For interested
readers, a more detailed derivation can be found in the appendix of
[21].

(2) In equations (10)-(13), A0 and M can be computed provided that
A and Φ are given. However, it is difficult to compute A1 since the
calculation of the inverse of ΨAΨT is almost as difficult as solving
the problem (6). As a result, we need to approximate A1 using an
alternative approach, instead of using (12) directly. In the next sec-
tion, we will provide a hierarchy of approximations. In particular,
A0 can be obtained using the standard Galerkin method, and A1

corresponds to a Galerkin projection to successively extended sub-
spaces.

(3) These calculations are limited to linearized models. For nonlinear
models, we will retain the Galerkin formalism, by projecting the full,
nonlinear, atomistic model to the extended subspaces.

(4) In general, the external force f ex may not be in the range of ΦT ;
An example will be given later (see (20)). As a consequence, the
displacement field cannot be well approximated by basis functions
in Φ; see Fig. 10 for the performance of piecewise linear basis func-
tions. In this case, high-order basis functions are more appropriate
to reduce the approximation error and the enriched bases method
can still reduce the error around the interface.

(5) It is also worth mentioning that the concepts of two-stage mini-
mization and enriching procedure has been proposed in [1, 2]. The
enriching procedure is considered globally to achieve a better ap-
proximation due to the internal degrees of freedom. However, the
enriching procedure in Section 2.3 is only considered locally to re-
duce the interfacial error with a compromise between accuracy and
efficiency.

2.2. The standard Galerkin method. If A1 is neglected in (10), we have
A0p = Φf with A0 = ΦAΦT . Therefore, it is equivalent to the standard
Galerkin method, which has been a useful tool for approximating solutions
of PDEs [19]. To explain this more precisely, we let X0 = Range(ΦT ). We
seek p0 ∈ X0, such that,

(14) (Ap0, ϕ) = (f ex, ϕ), ∀ ϕ ∈ X0.
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Here the parenthesis stands for the standard inner product. Namely, (f ex, ϕ) =∑
i f

ex(xi)ϕ(xi).
With direct calculations, one can verify that this formulation leads to

the stiffness matrix A0, and the effective equation (10) (without A1). This
type of weak forms have been used extensively in the adaptive QC methods
[39, 44, 45].

As a simple illustration, we consider a test problem, where the atomistic
system consists of a chain of atoms with up to the second nearest neighbor
interaction. The setup of the problem is as follows: We include displace-
ments of all the atoms on the right as the CG variables, while on the left, we
choose one atom out of every few atoms. The operator Φ is defined based
on the standard piecewise linear nodal bases. The details will be explained
in the next section. From Fig. 4(b), we observe that the error is concen-
trated near the interface. More examples, e.g., Figs. 8(c) and 13(a), further
support this observation. Therefore, when the error is measured under a
uniform norm, e.g., W 1,∞, the error at the interface would dominate.

We attribute this phenomenon to the absence of A1 in the effective model
(14). In Fig. 4(c), we plot the l2 norm of each row of A1 as a function of
the atomic index. It is clear that the main contribution of A1 is localized
around the interface. In the following section, we describe how to incorporate
A1 into the model, and through numerous examples, we demonstrate the
reduction of the error.

2.3. Enriched bases method. We now try to improve the approximation
by introducing an extended approximation. In the case when the potential is
quadratic, this amounts to computing the matrix A1. Since A1 is difficult to
compute directly, we will approximate it using a Krylov subspace method.
In particular, the expression (12) involves the solution of a linear system
with multiple right-hand sides, for which the Krylov subspace method is
especially useful [15]. More specifically, let V = ΨAΦT , and we define

(15) K`

(
ΨAΨT , V

)
= span

{
V,ΨAΨTV, · · · , (ΨAΨT )`V

}
.

For the general theory regarding Krylov subspaces, we refer the reader to [47,
46]. Often of practical interest are the orthogonal bases for K`

(
ΨAΨT , V

)
,

which will be denoted by V`, and we have

(ΨAΨT )V` ≈ V`T,

where T is a block tri-diagonal matrix with dimension ≤ (`+1)n. The error
is a matrix with low rank. Thanks to this approximation, we have

(ΨAΨT )−1V` ≈ V`T−1.

As a result,

A1 ≈ ET
1 T
−1E1,

where ET
1 = [I, 0, · · · , 0].



8 J. CHEN, C. J. GARCÍA-CERVERA, AND X. LI

To compute the basis vectors, a Block Lanczos algorithm [47] can be used.
The detailed algorithm is shown below.

Algorithm 1 Block Lanczos algorithm

Set V0 = 0 and Z0 = V .
for all j = 1, 2, · · · , `, do

Rank revealing QR factorization of the n× pj−1 matrix Zj−1: Zj−1 =
QjRj−1. Rj−1 may be a permuted upper triangular matrix;

Let pj = rank(Zj−1), Vj be the first pj columns of Qj , and Bj−1 be
the first pj rows of Rj−1;

Zj ←− AVj − Vj−1B
T
j−1;

Aj ←− V T
j Zj ;

Zj ←− Zj − VjAj .
end for

From a practical viewpoint, the main difficulty associated with imple-
menting Algorithm 1 is due to the fact that the matrix Ψ is difficult to
access. Furthermore, the algorithm seems to be limited to linear problems.
Here three steps are taken to alleviate these difficulties.

First, we define a Krylov subspace which is equivalent to (15); but it can
be implemented much more efficiently. In particular, we consider the Krylov
space

(16) K`

(
QA,W

)
= span

{
W,QAW, · · · , (QA)`W

}
,

with W = QAΦT . It is easy to check that Algorithm 1, when applied to
K`

(
QA,W

)
, yields the same result as the method applied to ΨTK`

(
ΨAΨT , V

)
.

The advantage of (16) is that Q can be obtained as the complementary pro-
jection of P ∈ Rn×n, which can be computed from Φ.

Secondly, we recall the previous observation that the error introduced in
the standard Galerkin method tends to center around the interface between
the continuum region and the atomistic region. Therefore we only choose a
subset of basis functions in Φ, which correspond to the basis functions around

the interface. To make it more specific, we let Φ̃ be the matrix that contains

m additional basis functions with m � n, and we define W̃ = QAΦ̃T , and

accordingly, K`

(
QA, W̃

)
. Since the atomic interaction is assumed to be of

finite range, these additional basis functions still have compact supports,
which makes the Lanczos algorithm feasible in the current setting.

Once the Krylov subspace is generated, we define an extended space by

X = X0 ⊕K`

(
QA, W̃

)
.

The additional basis functions depend on the force constant matrix A. Un-
like the basis functions in Φ, they incorporate the atomic interactions. Moti-
vated by this observation, these basis functions will be referred to as enriched
bases.
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At the third step, we return to the fully nonlinear atomistic model (2).
We will project the full (and nonlinear) model to the subspace X using a
Galerkin projection: We seek u ∈ X, such that

(17) (−∇V (u), ϕ) = (f ex, ϕ), ∀ ϕ ∈ X.

This weak form was also used in the adaptive QC methods [39, 44, 45].
Clearly, this Galerkin formulation is based on the force balance, rather than
a minimization of the energy, which might suffer from the issues of the ghost
forces.

The above three steps constitute the main components of the enriched
bases method. In the next section, we discuss how to approximate the inner
products in the weak forms.

2.4. Quadrature approximations and connections to the QC method.
To reduce the computational cost in (14) and (17), we introduce quadrature
approximations in the continuum region where the displacement is smooth.
Notice that the enriched bases are only confined to a neighborhood of the
interface, so the standard Galerkin method and the enriched bases meth-
ods have the same set of basis functions in the interior of the continuum
region, and our discussion on the quadrature approximation applies to both
methods.

There are three terms that need to be approximated using the quadrature
rule in (14): Φf ex, ΦΦT , and ΦAΦT . As an example, we consider the case
where the continuum region has been equipped with elements: Intervals
(1D), triangles (2D), and tetrahedrons (3D), with basis ϕj being a standard
piecewise linear function which forms the j-th row of Φ.

Let i and j be two vertices of an interval T in 1D (or a triangle in 2D and
a tetrahedron in 3D). The (i, j) component of M = ΦΦT can be computed
as

Mi,j =
∑
k∈T

ϕi(xk)ϕj(xk) ≈ 1

V0

∫
T
ϕi(x)ϕj(x)dx,

where V0 is the volume of the unit cell. This integral can be further approx-
imated by standard quadrature formulas.

We can approximate the components of F = Φf ex and K = ΦAΦT by

Fi =
∑
k∈Ωi

ϕi(xk)f(xk) ≈
∫

Ωi

P (x)∇ϕi(x)dx,

Ki,j =
∑
k∈Ωi

∑
m∈Ωj

ϕi(xk)ak,mϕj(xm) ≈
∫

Ωi

C(x) :
(
∇ϕi(x)⊗∇ϕj(x)

)
dx,

where Ωi and Ωj are supports of ϕi and ϕj , respectively. Here P and C can
be identified as the first Piola-Kirchhoff stress tensor and the Lagrangian
tangent stiffness tensor, respectively. The detailed construction of P and
C from the atomistic model can be found in [53]. Both integrals can be
further approximated by standard quadrature formulas. Interested readers
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may find earlier discussions on quadrature approximations in [18, 29, 32, 17]
for static problems and [24, 56] for dynamics problems.

In the standard Galerkin method, if we use piecewise linear functions as
basis functions and the mid-point rule for the quadrature approximation for
all elements in (14), we get the local QC method [53, 13].

Once the quadrature approximation is used in Galerkin methods, three
regions arise: The atomistic region where the force is treated “as is”, one
continuum region with the quadrature approximation, which is equivalent
to a finite element approximation of an elasticity model, and one region in
between with no quadrature approximation. This region at the interface will
be referred to as the interbedded region, which is considered as an addition
to the original QC method to specifically reduce the coupling error. This
is illustrated in Fig. 1. Kinematically, the number of degrees of freedom in
the interbedded region is reduced by introducing rep-atoms (coarse grained
elements). However, energies or forces over these elements are still calculated
based on the summation of site energies or site forces per atom. Therefore,
atoms in the interbedded region act as quasiatoms, which play a similar
transitional role to the quasi-nonlocal atoms [52].

Fig. 1. A schematic picture of the interbedded region and quasi-
atoms. The interbedded region with quasiatoms separates the
atomistic region from the continuum region, serving as a smooth
model transition.

Clearly, formulas presented here and the Galerkin projection are valid
in high dimensions as well. In Fig. 1 we have illustrated how this can be
implemented in 2D. More specifically, the enriched bases will be introduced
in the elements next to the interface (green), and in those elements, the
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forces are evaluated exactly. On the other hand, in elements further away
from the interface (white), the quadrature formulas shown above are used to
compute the average forces. This part is equivalent to the local QC method.
In fact, this procedure for approximating the forces has been implemented
in [24, 56], although in different settings.

The original QC method [38, 6, 7] and other multiscale methods without
ghost forces [33] share the similarity that the error in a multiscale method is
dominated around the interface. In our approach, on the one hand, the error
in the interbedded region decays quickly away from the interface between
the interbedded region and the atomistic region. At the interface between
the continuum region and the interbedded region, the quadrature approxi-
mation will make an error, which is often much smaller compared with the
error at the interface between the interbedded region and the atomistic re-
gion. On the other hand, there is no energetic reduction for quasiatoms
in the interbedded region. The enriched bases can be naturally added in
the framework of a Galerkin method, which can reduce the error between
the interbedded region and the atomistic region significantly. Moreover, the
quadrature approximation and the enrichment are combined in a concurrent
way. One helps the other, and vice versa. This leads to a much better ap-
proximation to the atomistic model without increasing the computational
complexity. All these will be verified by simulation results in Section 3.

3. Numerical Results

3.1. A one-dimensional chain model. Consider a one-dimensional chain
model over the unit interval [0, 1]. For comparison with some existing multi-
scale methods, only up to the second-neighbor interaction is included. The
total energy is written as

(18) V =
∑
j

[
U

(
yj+2 − yj

ε

)
+ U

(
yj+1 − yj

ε

)
− f ex

j yj

]
,

where U is the interacting potential and ε is the lattice spacing constant.
Therefore, the equilibrium equation of the j-th atom reads as

−U ′
(
yj+2 − yj

ε

)
−U ′

(
yj+1 − yj

ε

)
+U ′

(
yj − yj−1

ε

)
+U ′

(
yj − yj−2

ε

)
= εf ex

j ,

for 1 ≤ j ≤ N. This simple model has been considered as a test problem in
many coupling methods.

As a starting point, the linearized version of the above equation will be
tested to illustrate the idea of Galerkin methods. Under this assumption,
we have

(2K0 + 2K1)yj −K0(yj+1 + yj−1)−K1(yj+2 + yj−2) = ε2f ex
j ,

where K0 and K1 are spring constants for the first and the second neighbor
interactions, respectively. Both the standard Galerkin method and the en-
riched bases method have been tested forK0 andK1 over a number of choices
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with similar performances, including parameters from linearized Lennard-
Jones potential and linearized Morse potential. In what follows, we choose
K0 = 4 and K1 = 1.4.

3.1.1. A Direct Comparison of the Error. In the first set of tests, we consider
a system with 1024 atoms, where the left 512 atoms are coarse-grained and
the remaining atoms are kept. This divides the system into two sub-regions.
In the coarse-grained (continuum) region, we choose one CG variable out
of every eight atoms, and we use standard piecewise linear basis functions.
Namely, for the nodal basis ϕi(x), we define qi =

∑
j ϕi(xj)u(xj). In the

atomistic region, every atom is chosen as a CG variable. This implies that if
the ith atom is in the atomistic region, we include the trivial basis function
ϕi(xj) = δi,j in the mapping Φ. To illustrate this better, we show in Fig.
2 the basis functions near the interface for cases with a uniform mesh and
a nonuniform mesh. The nonuniform mesh is constructed by a gradual
increase of mesh size from the atomistic region to the continuum region. Also
shown in the Figure are the extended basis functions around the interface.
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(c) Enriched bases

Fig. 2. Basis functions around the interface in Galerkin methods
with a uniform mesh, with a nonuniform mesh, and the enriched
bases method with ` = 1, respectively. (a): Uniform mesh; (b):
Nonuniform mesh; (c): Enriched basis functions in the enriched
bases method with ` = 1. The horizontal axis indicates the labels
of the atoms near the interface.

To mimic the effect of local defects, a point force is applied on the 514-th
atom, which is close to the interface between the atomistic region and the
continuum region. Dirichlet boundary conditions are used for both the left
and the right boundaries. Namely, u(0) = u(1) = 0, or u1 = uN = 0. Fig. 3
shows the displacement field and the displacement gradient of the atomistic
model. This solution will serve as the exact solution for the comparison
purpose.

We first compare the standard Galerkin method to the atomistic model,
for which the displacement error is shown in Fig. 4(a). The error clearly
develops a peak at the interface (x = 1

2). In addition, large error is also
observed at the boundaries. This is due to the fact that the interaction is
among first and second nearest neighbors, in which case the boundary con-
dition is quite subtle. A boundary layer may appear when one simply keeps
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(b) Displacement gradient

Fig. 3. Displacement and displacement gradient of a system with
1024 atoms given by the atomistic model with a point force ap-
plied on the 514−th atom. (a): Displacement; (b): Displace-
ment gradient. This external force satisfies the requirement that
f ex ∈ Range

(
ΦT
)

since the point is inside the atomistic region.

the first and the last atom fixed. To resolve this issue, we use an extrap-
olation technique. More precisely, we use displacements of interior atoms
to extrapolate displacements of ghost atoms (additional atoms introduced
outside the boundary), and then substitute them into equilibrium equations
of atoms near the boundary. For the present model with up to the second
neighbor interaction, we first compute the displacement gradient of atom 1
using one sided interpolation

−3y1 + 4y2 − y3

2ε

The displacement of the ghost atom 0 is then determined from

y2 − y0

2ε
=
−3y1 + 4y2 − y3

2ε
.

We solve for y0 in the above equation and substitute it into the equilibrium
equation of atom 2. The error associated with the solution obtained using
this boundary condition is shown in Figs. 4(b), from which one can clearly
see the elimination of the boundary effect. Similar treatment will be used
in subsequent tests, e.g., in Fig. 5(b).

For the enriched bases method, six basis functions around the interface are
selected to construct enriched bases from the Krylov subspace. Recall that
` denotes the index of Krylov subspaces (16). Figs. 5(a) and 5(b) demon-
strate the displacement error for the solutions obtained from the enriched
bases method, with and without the extrapolation at the boundaries. In
particular, from Fig. 5(b), we find that with the extrapolation, the bound-
ary effect is eliminated. Furthermore, the error, which still concentrates at
the interface; But it is of much smaller magnitude when compared to the
result of the standard Galerkin method.
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Fig. 4. Displacement errors of the standard Galerkin method.
(a): Without extrapolation for atoms near the left boundary; (b):
With extrapolation for atoms near the left boundary; (c): l2 norm
of each row of A1 as a function of atomic index. The error is
localized around the interface in the standard Galerkin method,
where A1 cannot be neglected.
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Enriched bases

(b) With extrapolation

Fig. 5. Displacement errors of the enriched bases method with
` = 5. (a): Without extrapolation for atoms near the left bound-
ary; (b): With extrapolation for atoms near the left boundary.

We further look at the accuracy of the enriched bases method with the
order of the Krylov subspaces changed from 1 to 5. The results are collected
in Fig. 6. Dramatic reduction of the error is observed when ` changes from
1 to 3, and the error begins to saturate gradually when ` further increases.
In order to reduce the error further, one has to include more basis functions

in Φ̃ near the interface.
Thus far, all the approximate solutions are obtained with the exact quad-

rature, in which case only the Galerkin projection is responsible for the error.
To check the additional error introduced by the quadrature approximation,
we implemented the aforementioned Galerkin methods with the quadrature
approximation, and the result, along with the results without quadrature
approximation, can be found in Fig. 7. It is clear that the error introduced
in the quadrature approximation is much smaller than the approximation
error introduced in Galerkin methods. This observation holds true for all
examples we studied here.
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(b) ` = 2
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(c) ` = 3
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(d) ` = 4

Fig. 6. Displacement errors of the enriched bases method with
extrapolation for the left boundary. (a): ` = 1; (b): ` = 2; (c):
` = 3; (d): ` = 4.
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(a) Standard Galerkin
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(b) Enriched bases

Figure 7. Error due to the quadrature approximation. (a): The
standard Galerkin method; (b): The enriched bases method with
` = 1.

Finally, we tested Galerkin methods with a slowly varying external force
given by

(19) f ex(x) =

{
sin(πx), if 1/2 < x ≤ 1,

0, if 0 ≤ x ≤ 1/2.
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This is smooth in the sense that f ex ∈ Range(ΦT ). The exact solution
is shown in Fig. 8 with displacement gradient in Fig. 8(b). In addition,
errors of the two methods are shown in Figs. 8(c) and 8(d). Again better
performance is observed for the enriched bases method.
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(b) Displacement gradient
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(c) Standard Galerkin
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(d) Enriched bases

Fig. 8. Displacement and displacement gradient of a system
with 1024 atoms given by the atomistic model with external force
given by (19), and displacement errors of Galerkin methods. (a):
Displacement; (b): Displacement gradient; (c): The standard
Galerkin method; (d): The enriched bases method with ` = 4.

3.1.2. Convergence rate of Galerkin methods. In this section, we investigate
the behavior of the error as ε → 0. Similar to the example in Fig. 3, we
consider a case where a point external force is applied at x = 0.5, at the
interface between the continuum region and the atomistic region. It is clear
that ‖f‖L2([0,1]) ≤ C1, ‖f‖BV([0,1]) ≤ C2 and ‖f‖H1([0,1]) ≤ C3/

√
ε, where

C1, C2 and C3 are constants independent of ε.
The following methods will be considered: The standard Galerkin method

with a uniform mesh, the standard Galerkin method with a nonuniform
mesh, the quasi-nonlocal QC method [52], the force-based QC method [37,
9], the enriched bases method with a uniform mesh, and the enriched bases
method with a nonuniform mesh. All the meshes considered here are fixed
as the system size is enlarged. All atoms are chosen as rep-atoms in the
quasi-nonlocal QC method and the force-based QC method.
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Fig. 9 shows the rate of convergence of the first four methods in W 1,1

norm, H1 norm, and W 1,∞ norm, respectively. All the methods have a
first-order convergence in W 1,∞ norm, even though the external force con-
sidered here is only in L2([0, 1]) ∩ BV([0, 1]). Galerkin methods and the
quasi-nonlocal QC method have a 3/2-order convergence in H1 norm, while
the force-based QC method only has a first-order convergence in H1 norm.
Galerkin methods and the quasi-nonlocal QC method have a second-order
convergence in W 1,1 norm, while the force-based QC method has a first-
order convergence in W 1,1 norm.

These results are somewhat unexpected since the external force is only in
L2([0, 1]) ∩ BV([0, 1]), while higher regularities are required for theoretical
studies of the quasi-nonlocal QC method [38, 8] and the force-based QC
method [37, 9]. It has been proven in [38] that, for the quasi-nonlocal QC
method, if f ∈ Wm,p, p ≥ 1, m ≥ 4 then a uniform convergence rate in
W 1,∞ is obtained; and in [8] that if the solution of the atomistic model

is in W 4,2 then the convergence rate in the W 1,p norm is ε1+1/p for 1 ≤
p ≤ ∞. For the force-based QC method, it has also been proven that if
f ∈Wm,p, p ≥ 1, m ≥ 4 one gets a uniform convergence rate in W 1,∞ [37],
and if the solution of the atomistic model is in W 3,∞, then the convergence
rate in W 1,∞ is quadratic. In this example f ∈ L2([0, 1]) ∩ BV([0, 1]), and
it is not yet clear how the theoretical analysis can be extended to this case.

Quantitatively, the standard Galerkin method on a nonuniform mesh pro-
vides a better approximation to the atomistic model. Even though the same
convergence rate is obtained in the W 1,∞ norm for these methods, the pref-
actor in the standard Galerkin method on a nonuniform mesh is smaller that
those in the quasi-nonlocal QC method and the force-based QC method. The
prefactor in the Galerkin method with a nonuniform mesh can be one order
of magnitude smaller than that in the quasi-nonlocal QC method and a cou-
ple of orders of magnitude smaller than that in the force-based QC method.
We can also see that the Galerkin method has a larger prefactor than those
in the quasi-nonlocal QC method and the force-based QC method if a uni-
form mesh is used for W 1,∞ norm. This suggests that a smooth transition of
the mesh size from the atomistic region to the continuum region is desirable
to reduce the error. After the quadrature approximation, atoms near the
interface in the continuum region work as quasiatoms, which might explain
why the corresponding Galerkin method outperforms other methods.

In Table 1 we show the W 1,1, H1, and W 1,∞ norms of the error for
the enriched bases method with a uniform mesh. With a fixed number
of enriched bases (m = 20) around the interface, the error drops quickly
at the beginning and then follows corresponding convergence rates of the
method in three norms. This is mainly due the to deficiency of enriched
bases for smaller ε. Moreover, the prefactor in this example is roughly
one order of magnitude smaller than that of the standard Galerkin method
with a uniform mesh in the previous example, which shows the technique of
enrichment is still an efficient way to reduce the error.
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Fig. 9. Errors of the standard Galerkin method with a uniform
method, the standard Galerkin method with a nonuniform mesh,
the quasi-nonlocal QC method, and the force-based QC method.
(a): W 1,1 norm. Convergence rates are 1.93, 2.00, 2.00, and 1.00,
respectively; (b): H1 norm. Convergence rates are 1.47, 1.50,
1.52, and 1.00, respectively; (c): W 1,∞ norm. Convergence rates
are 0.93, 1.00, 1.01, and 1.00, respectively.

ε 1/512 1/1024 1/2048 1/4096
W 1,1 9.94e− 17 1.91e− 08 7.66e− 09 1.88e− 09
H1 1.14e− 16 1.95e− 07 1.03e− 07 3.67e− 08
W 1,∞ 1.53e− 15 3.98e− 06 2.21e− 06 1.10e− 06
m 20 20 20 20

Table 1. W 1,1, H1, and W 1,∞ norms of the error for the
enriched bases method with a uniform mesh. With a fixed
number of enriched bases 20 around the interface, the error
drops quickly at the beginning and then follows correspond-
ing convergence rates for the method in three norms. The
reduction of the error slows down due to the deficiency of
enriched bases for smaller ε.

In Table 2 we list the W 1,1, H1, and W 1,∞ norms of the error for the
enriched bases method with a nonuniform mesh. As ε becomes smaller, a
larger number of enriched bases around the interface are required to keep
the error almost independent of ε. The small variation of the error in this
example is mainly because the enrichment here is not done adaptively. As
the number of bases increases, the profile of the error spreads out around
the interface. The number of enriched bases is roughly proportional to
1/|ε log ε|.

3.1.3. A slowly varying external force. We consider a slowly varying external
force given by

(20) f ex(x) = sin(πx), 0 ≤ x ≤ 1,

which does not satisfy the condition f ex ∈ Range(ΦT ). This force vanishes
at both end points. The exact solution is shown in Fig. 10(a) with displace-
ment gradient in Fig. 10(b). Since piecewise linear functions are used to
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ε 1/512 1/1024 1/2048 1/4096
W 1,1 2.61e− 16 1.82e− 16 1.24e− 14 4.09e− 15
H1 9.20e− 16 4.69e− 16 4.90e− 14 1.47e− 14
W 1,∞ 8.38e− 15 5.83e− 15 7.09e− 13 5.29e− 13
m 36 81 162 364

Table 2. W 1,1, H1, and W 1,∞ norms of the error for the
enriched bases method with a nonuniform mesh. As ε be-
comes smaller, a larger number of enriched bases around the
interface is required to keep the error almost independent of
ε. The number of enriched bases is roughly proportional to
1/|ε log ε|.

construct Φ, the exact solution cannot be well approximated in the contin-
uum region by the standard Galerkin method; see Fig. 10(c). Consequently,
the difference decays algebraically. Nevertheless, as enriched bases are used,
the error is still reduced; see Figs. 10(d) and 10(e). By comparing Figs
10(d) and 10(e), we observe enriched bases in a larger support are required
to reduce the error significantly. Overall, better performance is observed for
the enriched bases method again.

Similar to the convergence study in Section 3.1.2, we also conducted the
convergence study for the slowly varying force (20). The standard Galerkin
method, the force-based QC method, and the quasi-nonlocal QC method
have first-order convergence in W 1,1, H1 and W 1,∞ norms. This suggests
convergence rates of these methods are problem-dependent. A nonlocal
force may reduce the convergence rate of a method. To make the error in
the enriched bases method independent of ε, the number of enriched bases
scales O(1/|ε log ε|) and the support of these enriched bases is much larger
than that in Section 3.1.2.

3.2. An one-dimensional crack model. In this section, we consider a
one-dimensional crack model studied in [28], where a detailed description
of the model can be found. The model is adopted from the lattice models
[54], for which the issue of lattice trapping is first addressed. It contains
two symmetric chains of atoms above and below an open crack. Due to
the symmetry, only the upper chain is considered. Each atom is interacting
with two neighboring atoms from the left and two atoms from the right. In
addition, each atom in the upper chain is bonded to the corresponding atom
in the lower chain with a nonlinear spring, except for the first n bonds, which
are considered “cracked”. In spite of its simplicity, the model predicts the
correct fracture initiation mechanism [25, 23]. The total potential energy
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(d) Enriched bases
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Fig. 10. Displacement and displacement gradient of a system
with 256 atoms given by the atomistic model with external force
given by (20), and displacement errors of Galerkin methods. (a):
Displacement; (b): Displacement gradient; (c): The standard
Galerkin method; (d): The enriched bases method with 6 nodes
selected and ` = 4; (e): The enriched bases method with 12 nodes
selected and ` = 4.

for the upper chain reads as

V =− Pu1 +
∑
j≥1

(
U

(
uj+1 − uj

ε

)
+ U

(
uj+2 − uj

ε

))
+ (n− 1)γ0 + γ(un) +K2

∑
j>n

(uj
ε

)2
(21)
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with

γ(u) =

∫ u

0

K2

u2
cut

v

(
v − ucut

ε

)2

χ[0,ucut](v)dv,

γ0 = γ(ucut),

and χ[0,ucut] the characteristic function.
Galerkin methods are tested for scenarios when U is a harmonic potential

with K0 = 4 and K1 = 0.4, and the Lennard-Jones potential. The latter
gives similar results. The minimization problem and the nonlinear systems
of equations are solved using Newton’s method. For simplicity, we keep the
enriched bases fixed at each step in Newton’s method. We choose K2 = 0.5,
and ucut = 0.5.

In the context of fracture mechanics, of particular interest is the crack
initiation criteria. This is manifested in lattice models in the form of a bi-
furcation. In Fig. 11 we show the corresponding bifurcation diagrams for
the the atomistic model and the Galerkin method, and they agree very well.
This implies that the reduced model obtained from the Galerkin method
inherits the correct property of stability transition. In what follows, we set
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Fig. 11. Bifurcation diagrams for the atomistic model and the
Galerkin method. The middle branch contains unstable equilibria
while the other two branches are stable.

P = 1 so that the system only has one solution, which makes the compar-
ison between different methods unambiguous. For the traction boundary
condition, we set forces of the first two atoms to be

f1 =
K0 + 2K1

K0 + 4K1
P, f2 =

2K1

K0 + 4K1
P
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so that a uniform displacement gradient will be generated near the boundary
[26]. The same idea is applied to the nonlinear case.

We first study the numerical error introduced in Galerkin methods. Con-
sider the system with 1024 atoms and the crack tip at n = 514. The left
512 atoms are coarse-grained and the remaining atoms are kept to define the
atomistic region. Atomic displacement and displacement gradient are shown
in Fig. 12. This will be regarded as the exact solution. Meanwhile, Fig.
13 shows displacement errors of the standard Galerkin method on a nonuni-
form mesh, and the enriched bases method as a function of ` for ` = 1, 2, 3,
respectively. We see that the error is reduced dramatically in the enriched
bases method.
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Fig. 12. Atomic displacement, and displacement gradient of the
crack model. (a): Displacement; (b): Displacement gradient.

We now turn to the study of convergence rates. In particular, we compare
the standard Galerkin method with a nonuniform mesh, the quasi-nonlocal
QC method, the force-based QC method, and the enriched bases method
with a nonuniform mesh. The limiting process is defined as follows: All
the meshes considered here are fixed as the system size is enlarged. All
atoms are chosen as rep-atoms in the quasi-nonlocal QC method and the
force-based QC method.

Fig. 14 shows convergence rates of the first two methods in W 1,1 norm,
H1 norm, and W 1,∞ norm, respectively. The standard Galerkin method on a
nonuniform mesh and the force-based QC method converge in W 1,1, H1, and
W 1,∞ norms with rates of convergence 2, 1.5, and 1, respectively. The quasi-
nonlocal QC method converges linearly in all three norms. Moreover, the
standard Galerkin method on a nonuniform mesh converges with a prefactor
which is more than two orders of magnitude smaller than that of the quasi-
nonlocal QC method. Compared with the previous example, the external
force in this example is also in L2, but the convergence rates are different.
Therefore, how the theoretical analysis can be extended to this case will be
of great interest.
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(a) Standard Galerkin
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(b) ` = 1
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(c) ` = 2
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(d) ` = 3

Fig. 13. Displacement errors of Galerkin methods. (a): The
standard Galerkin method; (b): The enriched bases method with
` = 1; (c): The enriched bases method with ` = 2; (d): The
enriched bases method with ` = 3.
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Fig. 14. Errors of the standard Galerkin method with a nonuni-
form mesh, the quasi-nonlocal QC method, and the force-based
QC method. (a): W 1,1 norm. Convergence rates are 2.00, 1.00
and 1.91, respectively; (b): H1 norm. Convergence rates are 1.50,
1.00 and 1.50, respectively; (c): W 1,∞ norm. Convergence rates
are 1.00, 1.00 and 1.00, respectively.

Table 3 shows W 1,1, H1, and W 1,∞ norms of the error for the enriched
bases method with a nonuniform mesh. With a fixed number of enriched
bases around the interface, the error remains small, but slightly grows as ε
becomes smaller, indicating that more enriched bases are needed.



24 J. CHEN, C. J. GARCÍA-CERVERA, AND X. LI

ε 1/512 1/1024 1/2048 1/4096
W 1,1 7.44e− 17 1.09e− 17 3.00e− 17 9.29e− 17
H1 8.99e− 17 1.99e− 17 4.19e− 17 1.19e− 16
W 1,∞ 1.94e− 16 1.23e− 16 1.4e− 16 3.33e− 16
m 18 18 18 18

Tab. 3. W 1,1, H1, and W 1,∞ norms of the error for the
enriched bases method with a uniform mesh. With a fixed
number of enriched bases 18 around the interface, the er-
ror remains small, but slightly grows as ε becomes smaller,
indicating that more enriched bases are needed.

From a practical viewpoint, only a small fraction of atoms around lo-
calized defects should be kept, and all remaining atoms should be coarse-
grained. So in the last test, we consider the case where only a few atoms
around the crack tip are kept and all remaining atoms are coarse grained.
This gives a continuum/interbedded/atomistic/interbedded/continuum par-
tition of the system. Fig. 15 shows displacement errors of Galerkin methods.
It is clear that this coupling, which involves much fewer degrees of freedom,
offers a good approximation.
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Fig. 15. Displacement errors of Galerkin methods using a contin-
uum/interbedded/atomistic/interbedded/continuum coupling for
384 atoms. (a): Standard Galerkin method; (b): Enriched bases

method.

4. Conclusion

We derived an effective coarse-grained model starting with molecular me-
chanics as an exact model. It is worthwhile to emphasize that we do not
introduce the continuum model to begin with. Rather, we work with a pre-
selected CG variables. The exact model can be projected to a subspace,
which naturally leads to the standard Galerkin method. Due to the lack of
direct physical significance of the basis functions, the approximation may
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not have sufficient accuracy. We proposed to improve the modeling accu-
racy by using the enriched bases method, which is based on introducing
more basis functions at the interface. We have used the Krylov subspaces
and the block Lanczos algorithm to automate this procedure. Both meth-
ods have been systematically tested and compared with some other coupling
methods. Although currently there is no theoretical analysis, the numerical
experiments have indicated excellent performances both quantitatively and
qualitatively. The introduction of the quadrature approximation, the in-
terbedded region, and quasiatoms has made the computational complexity
of our methods comparable to other methods but with better performances.
Application of our methods for high dimensional problems will be presented
in future works. Another interesting issue is the performance of the enriched
bases method if enriched bases are used in the energy-based framework of
the Galerkin method since ghost forces appear as a consequence of the quad-
rature approximation.
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